MICRO
FOCUS

AutoPass License
Server

API| Document

Legal Notices

Warranty

The only warranties for Hewlett Packard Enterprise Development LP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from Micro Focus required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
©-2017-2022-Micro-Focus. All-rights-reserved.
Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

This product includes an interface of the ‘zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.

About this PDF Version of User Guide

This document is a PDF version of the User Guide. This PDF file is provided so you can easily print multiple topics from the
help information or read the User Guide in PDF format. Because this content was originally created to be viewed as User
Guide in a web browser, some topics may not be formatted properly. Some interactive topics may not be present in this
PDF version. Those topics can be successfully printed from within the User Guide.

Table of Contents

1o o [UTo1i o] o DO PO T PP PPPPPPRPPPPPTN 6
L= 11 o JRS] £= 11 (=T PR 6
Authentication 6
Authentication 7

HTTP Methods 8
Response 8

Errors 9

=y (od o N T =T 1T PP PP 11
L] 1B (=T OO PP PURRR P 11
REGUEST. ...ttt s 11
RSO ...ttt s 11
o] a1 3 (oI N[(= PR PUPRPR P 13
€12 ool OO PP PP PP PP PUP PP 14
F 1] o101 (= OO P PP PTPUPPPO 14
=T 0 B PSSP 14
ST 0 L0] T = PSSP 14
o113 (o B [0 (= T PP SRPTPRPP 15
INSTAIL LICEINSES ...ttt ettt ettt e st e o4 s b et e4a s et e e 4as e et e 4k et e e 4R R et e+ 4R et e e 4R b e et e e R R e et e e R et e e n e e e e s 16
=T 0 B PSSP 16
RESPONSE ...t s 16
o113 (o B [0 (= T PP SRPTPRPP 17
(D=1 (=) L o= T PP P PP PP PUP PP 18
REUEST. ..ttt s 18
RSO ...ttt s 19
o] 101 S (oI [0 (= O PP PP PPPPPPRPPPO 20
G FRATUIE DIAIIS ...ttt e ookt e e oo a et e oo h et e oo e a bt e e ok b et e e e ah b e e e e e e a b bt e e e aabr e e e e annre e e e ennes 21
REGUEST. ...ttt s 21
RSO ...ttt s 22

[T 1S 0 T 1[0 =T 23

GEt ProAUCE FERATUIE DEBLAIIS.uureiiiieiiieeiiee et e e e e et e s e e e e e e e eab s e eeaesee e bbb s eeesee s s s bbb e seasseesbaba s essssssssbanneseassensrnes 23

LY =T0 [T ST PP PPPPPPPPRPN 23
Y] oo] IS =TT PP PPPPPPPPPIPN 24
(T[4 1 538 (oI N[0 L= PP R P PPRP PR 26
RESEIVALION POOI USEISieiieiiiie ettt ettt et e e e e ettt et e e e e e s e s ate b et eeeeeeeeaambebeeeeeeeeesannbebeeeeaeeeeaannbebeeeeeaeeesannssnnneaaaaenan 27
LT gl 01T N 1 0T L= PR UP TR 27
Create Reservation POOI MEMDEIS ...t s et e s n e e s n et e s e e be e e nnne e s reeennneenns 27
Request 28
Response 28
Points to note 30

LRy =AY ST o To AV 1=T o o] = gl I SRRSO 30
Request 30
Response 30
Points to note 31
Delete Reservation POOI MEMDEISoiiiiiiiiiiiie ettt e e e e e e e s s e e s anr e e e e nnnns 32
Request 32
Response 33
Points to note 34
LICENSE U SAQE. .. it 35
RETNEVE FRALUIMNE USAJE uuuuuuiiiiiiiiiiiiiiiiiiet e aaae e aaaa s e s aanaaaaanansnasaaass s s s 36
Request 36
Response 37
Points to note 38
Retrieve RESEIVALION POOI USBUE..........uiiiiiiiiii ettt e st e sttt e e e et et e e e sabe e e e e anbbe e e e anbae e e e anbaeeeeanbaeeesantes 38
Request 38
Response 38
Points to note: 39
RetrieVe APPHCALION USAGEoiiiiiiiiiiiiiie ettt ettt e et e e e s a bt e e e ea bt e e e e aa b et e e e aabe e e e e ambe e e e e ambee e e e anbeeeeeanbaeeeeantes 40

Request 40

Response 40

Points to note: 41

FRALUIE USATE DATAL.....ciiii ittt ettt e et e e oottt e e e e e o a ettt e e e e e 1 b e ettt e e e e e s n e e et e e e e e s e e e e e e e s 42
Retrieve Feature Usage RAW TIANSACTIONccoiiiiiiiiiiiee ittt e e e e bt e e et b et e e e aab et e e e aaba e e e e anbee e e e anbreeeeannns 42
Request 43
Response 44
Retrieve Feature Usage SUMMAry TrANSACHONciiiiiiiiiiiiiiieieesiisiiteir e e e e e s s st eeeeaeessssnntaeeeeeeessanssntaeaeeaesssansnnaneraeeees 45
Request 45
Response 46

GET SUMMArY ProQUCH/LICENSE USAGEeeeiiiiiiieiiitieee ettt ettt et e e e e bt e e e e st et e e e aab et e e e aab e e e e e aabb e e e e anbbeeeeanbneeeennnns a7
=T oo g ARS8 10 0= L A U EST= T [ST UUPPPTTTT 47
End point 47
Request 47
Response 48

N S T= T 011 o] (S 0o Lo [PO OPPPPPPPPPNE 49
Sample code to “GET” fEAtUMNE USAQGEueiiiiiiiiitee et e e et e e e e e s e s e b e et e e e e e s s bbbaeeeaeaeeas 52
Sample code to “POST/DELETE” (add/remove) members to/from Reservation POOL.cccccoiiiiiiiieen 54
Sample code to “GET” feature usage Raw Transaction Dataccoouiiiiiiiiiiiiiiii e 55
Sample code to “GET” feature usage summary Transaction Data ... 55
o] 11 S (oI] (=P PP PP RR P PPPRPRPI 56
(o] G O oo =T PP PP PTPRPP 57

0] 0) 1 58

Introduction

The AutoPass License Server (APLS) APIs allows developer to perform few operations such as install licenses,
delete license and get features details with a product and user to perform few restricted operations on license
usage report and reservation pool members.

APLS APIs are built using REST principles and follows HTTP rules, enabling HTTP clients to interact with the
APlIs.

Every resource is exposed as URL. The URL of each resource can be obtained by accessing the APl Root
Endpoints.

https://<hostname>:<port>/autopass/services/vl for Fetch License, Get Lock, Install Licenses, Delete Licenses

and Get Feature Details APlIs.

https://<hostname>:<port>/autopass/wsservices/v9.3 for other APIs.

Note: the URL configuration will modify based on the APLS server deployment configurations.
Default is protocol and port is hftps and 5874.
Getting Started

All APLS APIs requires a minimum of one mandatory header.
o APAUTHTOKEN: IDM Authentication Token.

$ curl https ‘ 5814 /autopass/services/vl/1lic
11~

Authentication

Most AutoPass License Server API need to be authenticated using an IDM authentication token.
To obtain an IDM authentication token programmatically using the IDM Rest API.

Submit an HTTPS POST request to the below URL.

S curl htt < | HostN >e i dm-—: vi /v2.0/tokens
z GlUcmFuc3Bvcr

The POST body should include the request content in the below format,

"paS”word“r@delflal"" |

"username "admin",

"password" : "!gaz2wsx"

}I

"tenantName" : "Provider"

}
Please note that you need pass IDM’s base authentication credentials in the header to get a valid IDM token.

o Authorization: Authentication request header.

$ curl https://iwfvm07739.hpeswlab.net:5814/autopass/wsservices/v9.3/reservation/pool/members?poolNa

me="Development”
-H '"Authorization: Basic YXBsclVzZXI6cGFzc3dvcmQ="

Authentication
The APIs use “Basic” authentication to authenticate and authorize users to perform operations on APLS APIs.

Default view only user configured in APLS is ‘aplsUser’: “password” (YXBscl1VzZXI6cGFzc3dvemQ=)
To manage users in APLS refer “User Management” section in user guide.

To pass the credentials to the rest APl use the below format:

<user name>:<password>

Encode the above value using Base64 encoding (e.g., YXBsc1VzZXI6cGFzc3dvemQ=)

Append encoded value with “Basic”, e.g. “Basic YXBsc1VzZXI6cGFzc3dvemQ="

Add above as “Authorization” header value

Points to Note
Authentication token should be generated based on the user managed in APLS. If the user is deleted, the APIs
will not able to authenticate and authorize the token and you will receive 401 error code

To add or delete operations, the authenticated token should belong to an administrator user in APLS.

In case of SSL connection issue with curl command, search for “Curl disable certificate verification” to allow SSL
connection without validating the server certificate. Please note the curl command given above is just a sample
and meant for testing purpose only. It is always recommended that client implement code to validate the server
certificate before proceeding with the next step.

HTTP Methods

Using GET method, user can get the list of resources or details of a particular instance of a resource.

For e.q., below is to get a list of license installed in the APLS for a product
$ curl https://iwfvm077 hpeswlab.net:5814/autopass/services/vl/product/features?productUniqueld="
HPE UFT 14.0"

5
me="Develpomen
-H 'Authorization: Basic YXBs 6cGFzc3dvemQ="

Currently the below three methods are used in API queries.

Find the below table for reference:

Method Description
|
GET To retrieve resources.

POST To create resources and performing resource actions.

DELETE To delete resources.

Response

Response, by default in the XML format.
Find the below table for reference:

NODE NAME Description
|
Schema Each response schema differs based on the resources

Status Each API call will return an status with SUCCESS/ PARTIAL SUCCESS/FAIL

errorCode Custom error code from APLS server

errorMessage Generic error message

customMessage Custom error message specifying the nature of the failure

Sample response structure,

ription>

SIAPACIFIC/rpadmava</userName>

Other Format Support

All GET APIs supports JSON format. To return the response in JSON format Accept head as well for which the
required response format need to be specified in the respective request’s Accept header.

For example:

Pass Accept header as application/json below result displays

Errors

APLS APIs uses HTTP status codes to indicate success or failure of an API call. In general, status codes in the
2xx range means ‘success’, 4xx range means there was an ‘error’ in the provided information, and those in the
5xx range indicates ‘server side errors’.

Commonly used HTTP status codes by APLS are listed below:

Status Code Description
|
200 Ok

201 Created

401 Unauthorized (Invalid AuthToken)

403 Forbidden

404 URL Not Found

406 Not Acceptable

500 Internal Error

Fetch License

This API can be used to get the license keys for a given product installed on APLS. To fetch all the license
keys for a given product installed on APLS, the user need to pass the Unique Product Identifier of the given
product as the query parameter of the HTTP GET request.

This API also has the capability to fetch license keys which are installed or deleted from APLS server after a
given last server time stamp. The last server time stamp will be retuned from the APLS server in response
body with each successful response from the server. This server time can be used to make subsequest
requests to the APLS server to get the delta of changes after the given time stamp. The server time stamp is
represented in seconds from epoch.

Attributes
Member attributes should be passed to the APLS server using HTTP GET methods as query parameters in the
URL. The response is in XML media type only.

ATTRIBUTE DESCRIPTION

productUniqueld Uniqueldentifier for a given product as retuned by the AutoPassJ Core.

lastServerTimeStamp The server time stamp represented in seconds from epoch.

Request

REQUEST
|
Method URL

GET https://<APLM IP_ OR HOSTNAME>:<PORT>/autopass/services/vl/license?productUniqueld=<Unique Product ID

>&lastServerTimeStamp=<Last Server_Response_Time_Stamp_In_Seconds>

Response
e The response of this API will be in XML only. A sample XML response would look like this —

STATUS RESPONSE
|

200 Created A successful response from the APl The license details are returned in response.

202 OK If the product information is not available at APLS and a request is made. This another successful

response from server which denotes the product information is not available at the APLS server.

is not found for the uct in th

finition is not found for the product in t

406 Not If the last server timestamp format is incorrect (not in long type) then the following error is sent in

Acceptable
response.

406 Not If the unique product identifier not passed in the request then following error is thrown in response.
Acceptable

>rro

uct unique identifier nnot be null or empty.</e

Product unique identifier cannot be null or empty.</

Points to Note

e Unique Product Identifier is a MUST. This API can return licenses installed on APLS only if a valid unique product
identifier is passed. AutoPass CORE has the capability to get the unique product identifier for a given product. You
need to contact the AutoPass product integration team to understand how to get the unigue product identifier using

CORE.

e The Product Definition (PD) file of the product for which this API is to be invoked must be available on the APLS
server _prior to_making this call. AutoPass Core version 9.4 has the capability to push the PD file to APLS
automatically when AutoPass Core is running under APLMS mode.

Get Lock

This API can be used to get the Lock Value for a given product from APLS. APLS has the capability to manage
two types of lock values, one lock value is the global lock value per installation of APLM and which will also be
hosted on the APLS management console Ul. Second set of lock values will be specific to the products
installed at the APLS server.

Products can chose of work with APLS’s global lock value or they can chose to have their own defined lock
value to be available at APLS. If products decides to go with their own lock value for the licenses installed at
APLS then they need to contact AutoPass integration team to help them in this process.

Attributes

Member attributes should be passed to the APLS server using GET, POST methods as query parameters in
the URL for GET method to in the request body as XML or JSON for POST methods. Lock APl uses HTTP
POST method with the following attributes to be passed in the body of the request

ATTRIBUTE DESCRIPTION
|

productUniqueld Uniqueldentifier for a given product as retuned by the AutoPassJ Core.

Request

REQUEST
|
Method URL

POST https://<APLS IP_OR HOSTNAME>:<PORT>/autopass/services/vl/lock

Sample Request

iqueId>HP UFT 12.5</ tUniqueId>

Response
e The response of this API will be XML or JSON depending upon the Media Type set in the request. A sample XML
response would look like this —

STATUS RESPONSE
|
200 Created A successful response from server. The APLS lock code is returned in response. In multi lock

configuration exists at APLS server then the pre configured lock code for the given product will be

returned.

529</lockDetail>

</LmsLockResponse>

The “lockType” xml attribute in the reaponse signifies that the type of lock value as returned by the API, APLS
support “DEVICE” lock type as of this release.
Points to Note

e For the first time when a user makes a call to the Lock service, it can pass the unigue product identifier of the APLS
product itself. In that case, this API will return the global lock value as hosted by the APLS server.

Install Licenses

This API can install licenses by loading a single license key file or multiple license keys in one file. You obtain
license keys on a per-product and per-feature basis. For details on obtaining license keys, see the individual
product documentation.

If you received a license key in the form of a file, you can invoke this micro service to install license(s) in APLS
server.

Request

REQUEST
|
Method URL

POST https://<hostname>:<port>/autopass/services/vl/licenses

Request Examples/ Configure a Request

After you created a request, you may now configure it as shown on the below. There are 3 items to take note
of.

1. The HTTP method is POST.

2. Request Parameter Value
Name: file
Value: file:<PATH_OF_LICENSE_FILE_NAME>

3. Media Type
This must be set to “multipart/form-data”

The above request contains the media type “multipart/form-data” and file:< PATH_AND_FILE_NAME> as an
input.
The API is called with the above information as an input with HTTP POST method to install the list of licesens.

Response

The Response by default will be in XML format. The status of this call can be identified through status field of
the response object which will contain SUCCESS / PARTIAL SUCCESS / FAIL.

If the API request to install license(s) are successful, the licenses will be added to the specified license
Management in APLS Ul ->View Licenses.

STATUS RESPONSE
|

200 OK Below is the response when the POST call to install licenses is successful.

400 BAD In case the input is malformed or not accepted, you will get 400 Bad Request from the server
REQUEST

401-UN In case if there is no IDM authentication token is passed,you will get 401 un authorized from the server
AUTHRIZED

500 INTERNAL In case of APLS server is not reachable/down or any internal issue.

ERROR

Points to Note

e Itis recommended to restrict the maximum number of licenses to be added to 100, for faster response.

e Currently the request input support the media type “multipart/form-data” only. The response media can
be either an xml or json based on the “Accept” header configuration in your query.

e From the above success response, you can see a license string tag which has base64 format and
license key type indicates whether the license file is ovekey4/safe key. You can decode the string to
verify the license.

e Also this API need to be authenticated using an IDM authentication token, please ensure you pass the
‘“APAUTHTOKEN?” for this query using the IDM authentication token.

Delete Licenses

This REST API will allow you to DELETE a list of licenses from a license management. Incase if you do not
want a specific license, you can delete a license. By using this APl You can delete any unused license that is
displayed in the APLS View Licenses UI.

Create a HTTP DELETE request to delete the license from a given license. IDM Authentication details must be
also submitted as part of HTTP request header.

e Deletion of licenses from APLS can be done in two ways:
By signing in to the APLS UIl. For more details how to delete license from license manager. Please refer user quide
("Archived License (License Management Pane)")

e By caling the APl by issuing the HTTP DELETE request to the APLMS endpoint/handler.

By calling REST API by issuing the HTTP POST request to the APLS endpoint/handler. Please read the
following details for more information about how to pass POST request.

Please read the following details for more information about how to pass DELETE request.
Important information
Ensure a license(s) exists through APLMS Ul in order for this rest service to successfully delete the license.

Please refer the user guide ("View Licenses (License Management Pane)”).
The following is the End Point to be used with HTTP DELETE request. The request shall be in XML format.

Request

REQUEST
|
Method URL

DELETE https://<hostname>:<port>/autopass/services/vl/licenses

Sample Requests:
Use case remove license feature from a license management

<RemovelicenseRequest>

The abve request contains the media type “application/xml” as an input.
The API is called with the above xml as an input with HTTP DELETE method to delete the list of licenses.
You can also use combination of licenselD can be used to remove licenses.

For example:

<LicenselID> </LicenselID>

/RemoveLicenseInfo>

Lic

The below sample request contains the media type “application/json” as an input.

For example:

Response

The Response by default will be in XML format which contain a HTTP status code and response XML.
Also the status of this call can be identified through status field of the response object which will contain
SUCCESS / FAIL.

STATUS RESPONSE

.|

200 OK Below is the response when the DELETE call to remove license from APLS is
successful

401-UN In case if there is no IDM authentication token is passed,you will get 401 un authorized from the server
AUTHRIZED

400 BAD In case the input is malformed or not accepted, you will get 400 Bad Request from the server
REQUEST

500 INTERNAL In case of APLS server is not reachable/down or any internal issue. Or a wrong URL is configured.

ERROR

Points to Note

The request input support the media type “application/xml or application/json”. The response media can be either
an xml or json based on the “Accept” header configuration in your query.

Also this APl need to be authenticated using an IDM authentication token, please ensure you pass the
“APAUTHTOKEN?” for this query using the IDM authentication token.

From the above request,the LicenselD will get it from the core “autopassj.reportLicenseSet(lock,false)” will retun
the list of licenses from APLS which you can then use license.getLicenselD() to get the licenselD which is mapped
to the feature ID and feature version and pass it to above request as an input to remove any specific licenses.

Get Feature Details

This API’s is to get the feature details (aggregated capacity) from APLS.The following are the 3 API's which will
return the feature details aggregated information based on by passing the product information (product unique
ID or combination of product ID and product version) or will return for a specific feature. Please find the below
request URI’s.

Request

REQUEST

Method URL

GET https://<IP>:5814/autopass/services/v1/product/features ?productUniqueld={productcode productfullversion}

https://<IP>:5814/autopass/services/vi/product/features ?productid={product id}&productVersion={pd version}

https://<IP>:5814/autopass/services/vi/product/features?featureld={feature id}&featureVersion={feature version}

@param productUniqueld:

Uniqueldentifier for a given product. Format for the value looks like productcode_productfullversion. Product
code and product version values can be found in the PD file.

@param productid:
Product code of the product as identified in the Product Definition file. This field is mandatory.

@param productVersion:
Version of the product as identified in the Product Definition file. This field is mandatory.
Note: The combination of the Product Code and Product Version is unigue.

@param featureld:
The specific feature number for each feature of the selected product.
@param featureVersion:

The version number of the feature (without the feature ID).

The below two query params are optional and can be used along with all the above three URLs. Both lockType
and lockValue should be use together and will retrieve the feature details based on the lock values passed. By
default wild carded lock values will be used to retrieve the feature details.

@param lockType
The lock type for which the feature details are to be retrieved. It is one of the following options,

e 1 —IP Address
e 4 —Device ID

@param lockValue

The lock value for which the licenses for a feature are to be retrieved. For e.g., Say lockType is 1, lockValue can
be 16.12.36.3.

The API is called with the above information as an input with HTTP GET method to get the feature details from
APLMS.

Important information

Ensure a product definition file(s) exists through APLS pdfile location folder or feature details exists through
APLS view license page in order for this rest service to successfully get the aggregated details.

Response

The Response by default will be in XML format. The status of this call can be identified through status field of
the response object which will contain SUCCESS / PARTIAL SUCCESS / FAIL.

Below is the response incase if any one of the above API’s request to get feature details are successful.

STATUS RESPONSE
|
200 OK Below is the response when the GET method is called for a product either using productUniqueld or

productID/productVersion. All the features of the product with aggregated capacity is listed under

FeatureListResponse

<FeatureListR
<feature>

lth Rep Standard 50 SH Nod

ivatic

</feature>

<feature>

</feature>
</Featurelis

200 OK Below is the response when the GET method is called for a specifie feature using featureld and

featureVersion. The aggregated capacity fo the feature is listed under FeatureResponse

Standard 50 S

ivationDateInUT
tionDateInUT

406 NOT Below is the response if the product is configured in APLS, however is available but license are not

ACCEPTABLE installed

found in Me
ound in lice

406 NOT Below is the response when the GET call to feature details is fail.mean if there is no PD file or license

ACCEPTABLE details not present in APLS.

not found for the product in th

Definition is not found for feature 1:1 in t

401-UN In case if there is no IDM authentication token is passed,you will get 401 un authorized from the server
AUTHRIZED

400 BAD In case the input is malformed or not accepted, you will get 400 Bad Request from the server
REQUEST

500 INTERNAL In case of APLS server is not reachable/down or any internal issue.

ERROR

Points to Note
e The response media can be either an xml or json based on the “Accept” header configuration in your
query.
e Also all the above 3 API's need to be authenticated using an IDM authentication token, please ensure
you pass the “APAUTHTOKEN?” for this query using the IDM authentication token.
Get Product Feature Details
This API is used to get the list of feature details and the list of feature license key details for the requested product

definition file id and product details from APLS.

Request
REQUEST

Method URL

GET https://<IP>:5814/ autopass/services/v10.5/getProductFeatures?pdfld={pdf file id}&pdfVersion={pdf
file version}&productid={product id}}&productVersion={pd version}

@param pdfid:

Product Definition file identifier.

@param pdfVersion:

Product Definition file version.

@param productid:

Product code of the product as identified in the Product Definition file.

@param productVersion:
Version of the product as identified in the Product Definition file. This field is mandatory.

Note: The combination of the Product Code and Product Version is unique.

Important information

Ensure a product definition file(s) exists through APLS pdfile location folder or feature details exists through
APLS view license page

Response

The Response by default will be in XML format. The status of this call can be identified through status field of
the response object which will contain SUCCESS / PARTIAL SUCCESS / FAIL.

Below is the response for the above API request to get product feature details from the server.

STATUS RESPONSE
]
200 OK < on="1.0" encoding="UTF-8" standalone="yes"?>

</isClockTamperingD

ctionEnabled>

</Feature>
<Feature>
<featureId>10612</featurelId>
<version>1</version>
<description>QuickTest Pro Siebel Add-in Concurrent User<
/description>
<licenseModel>FLOATING</licenseModel>
<isClockTamperingDetectionEnabled>true</isClockTamperingD
etectionEnabled>
<commuterstatus>ADMIN ALLOWED</commuterstatus>
<commuternoofdays>30</commuternoofdays>
</Feature>
</ProductFeaturelList>
<machineDetails>
<hostname>457bdd6e30de</hostname>
<ipAddressList>
<ipAddresses>172.17.0.4</ipAddresses>
<ipAddresses>127.0.0.1</ipAddresses>
<ipAddresses>fe80:0:0:0:42:acff:fell:4%eth0</ipAddresses>
</ipAddressList>
</machineDetails>
</Product>
<LicensedFeaturelList>
<FeatureInfo>
<featureId>10622</featurelId>
<featureVersion>1</featureVersion>
<featureDescription>QuickTest Pro PeopleSoft Add-in Concurren
t User</featureDescription>
<TotalCapacity>0</TotalCapacity>
<TotalUnits>0.0</TotalUnits>
<AvailableCapacity>0</AvailableCapacity>
<AvailableUnits>0.0</AvailableUnits>
<TotalUsedCapacity>0</TotalUsedCapacity>
<TotalUsedUnits>0.0</TotalUsedUnits>
<StartDate>1489795200</StartDate>
<FirstExpiryDate>900703</FirstExpiryDate>
<LastExpiryDate>900703</LastExpiryDate>
<licenseModelType>FLOATING</licenseModelType>
<associatedLicenseList>
<license>
<LicenseId>95c5807d-8695-42e7-9922-dlebcflf6ed9</Lice
nseld>
<rawKey>< ! [CDATA[&L1lt; ?xml version="1l.0"
encoding="UTF-8" standalone="yes" ?>
&1t;RAW LICENSE KEYé>

< /RAW LICENSE KEY>]]></rawKey>
<rawKeyContentType>XML</rawKeyContentType>
<keyType>SafeKey</keyType>
<capacity>100</capacity>
<creationDate>1489834150</creationDate>
<startDate>1489795200</startDate>
<endDate>900703</endDate>
<durationDays>-1</durationDays>
<validity>PERMANENT</validity>
<ltu>1</ltu>
<gracePeriod>-1</gracePeriod>
<graceCapacity>-1</graceCapacity>
<licenseModel>FLOATING</licenseModel>
<subscriptionRenewalPeriod>-1</subscriptionRenewalPer

<skuInfo>HP UFT</skuInfo>
<licenseKeyPurpose>For EPR Customers</licenseKeyPurpo

<LicenseStatus>

com</user>

7</value>

ockType>

1:4%eth0</

401-UN In case if there is no IDM authentication token is passed,you will get 401 un authorized from the server
AUTHORIZED

400 BAD In case the input is malformed or not accepted, you will get 400 Bad Request from the server
REQUEST

500 INTERNAL In case of APLS server is not reachable/down or any internal issue.

ERROR

Points to Note

e The response media can be either an xml or json based on the “Accept” header configuration in your
query.

e The above API need to be authenticated using an IDM authentication token, please ensure you pass the
“‘“APAUTHTOKEN?” for this query using the IDM authentication token.

Reservation Pool Users

Member Attributes

Member attributes should be passed when user call the API with POST or DELETE methods which contains four
attributes data. Refer user guide for more details (" Client User Management")

Refer the below table to understand member attributes for a given reservation pool:

ATTRIBUTE DESCRIPTION
|
userName The Windows or Unix user name of a client user DOMAIN/USERNAME

For example: ASIAPACIFIC/rpadmava

ipAddress The IP address of the system from where the client accesses the AutoPass License Server.

For example: 16.168.213.40

host The host address of the client system

For example: RPADMAVA2

clientID A unique value configured for each client based on the product’s support for this attribute.

For example: RPADMAVAZ2 (any configured string from the client)

Point to Note:
e The above four attributes can be encompassed as <userNameList>, <ipAddressList>,<hostList>,

</clientIDList>, these lists are grouped under “<members>"

e The above attributes will be used to “Add/Delete/Get” member details from a reservation pool

Create Reservation Pool Members

This REST API will allow to add a list of members to already created reservation pool.

Adding members to APLS reservation pool can be done in two ways,

e By signing in APLS Ul as an administrator. For more details how to create a pool and add users

to a client pool please refer user guide ("How to Manage Client User Access")

e By calling REST API by issuing the HTTP POST request to the APLS endpoint/handler. Please

read the following details for more information about how to pass POST request.

Important information
Create a reservation pool through APLS Ul in order for this rest service to successfully add the members. Please

refer the user guide ("Add a user pool").

Request

REQUEST
]
Method URL

POST https://<hosthame>:<port>/autopass/wsservices/v9.3/reservation/pool/members

Request Examples:

e Use case: Add a list of domain users name to a pool.

The above request contains the media type “application/xml” as an input.

The API is called with the above xml as an input with HTTP POST method to create the list of members for the
pool.

You can also use combination of userName, ipAddress, host and clientID can be used to add to the reservation
pool.

For example:

lientID>
<clientID: </clientID>
‘clientIDList>

To understand when we need to add a list of various other information, please check the “Client User
Management” section in the APLS user guide.

Response
The Response by default will be in XML format. The status of this call can be identified through status field of

the response object which will contain SUCCESS / PARTIAL SUCCESS / FAIL.
If the API request to add members are successful, the members will be added to the specified pool in APLS Ul

->Reservation Management.

STATUS RESPONSE

201 Created Below is the response when the POST call to add members to a pool is successful.

200 OK In case the second query is executed immediately after the first one, you will get the following response

e ol nar
>PARTIAL SUCCESS

Updated>

404 NOT FOUND In case the pool does not exist in APLS or URL is malformed

400 BAD In case the input is malformed or not accepted, you will get 400 Bad Request from the server
REQUEST
500 INTERNAL In case of APLS server is not reachable/down or any internal issue.

ERROR

Points to note
e |t is recommended to restrict the maximum number of members to be added to 100, for faster

response.
e Currently the request input support the media type “application/xml” only. The response media
can be either an xml or json based on the “Accept” header configuration in your query.
e Also only APLS admin users are authorized to execute this query, please ensure you pass the
“Authorization” for this query using the admin users in APLS.

e Pool name is case sensitive.
Retrieve Pool Member List

This API will get the member values such as User Name, IP Address, Host ID and Client ID for a given Pool

name.

Request

REQUEST
|
Method URL

GET https://<hostname>:<port>/autopass/wsservices /v9.3/reservation/pool/members?poolName={pool_name}

@param poolName:
Reservation pool as configured in Reservation Management -> Pool Management of AutoPass License Server.

For more details to get the {pool_name}, please refer the user guide ("Pool Management Tab").

Response
Response by default will be in the XML format which contains HTTP status code and member values for a given

reservation pool name. Also the status of this call can be identified through status field of the response object
which will contain SUCCESS / FAIL.

STATUS RESPONSE
__|
200 OK Below is the success response for the above query.

Input value for {pool_name} in this API query is ‘Development’(case sensitive)

\PACIFIC/rpadmava</userName>

oolResult>

200 OK In case there is no members configured for the reservation pool empty lists are returned as response

404 NOT FOUND Below response if the pool name is incorrect (Pool name does not exist)

400 BAD In case the input is malformed or not accepted, you will get 400 Bad Request from the server
REQUEST

500 INTERNAL In case of APLS server is not reachable/down or any internal issue.

ERROR

Points to note
e The other format supported for response is JSON

e Pool name is case sensitive.

Delete Reservation Pool Members

This REST API will allow you to DELETE a list of member from a reservation pool.

Create a HTTP DELETE request to delete the attribute values from a given Pool Name. Authentication details
must be also submitted as part of HTTP request header.

Deletion of members from APLS reservation pool can be done in two ways,

e By signing in to the APLS UI. For more details how to remove client user attributes from pool.
Please refer user guide ("How to Manage Client User Access")

e By calling the API by issuing the HTTP DELETE request to the APLS endpoint/handler.

By calling REST API by issuing the HTTP POST request to the APLS endpoint/handler. Please read the
following details for more information about how to pass POST request.

Please read the following details for more information about how to pass DELETE request.

Important information

Ensure a reservation pool exists through APLS Ul in order for this rest service to successfully delete the
members. Please refer the user guide ("Remove a client user's attribute from a pool”).

The following is the End Point to be used with HTTP DELETE request. The request shall be in XML format.

Request

REQUEST
|
Method URL

DELETE https://<hostname>:<port>/autopass/wsservices/v9.3/reservation/pool/members

Sample Requests:

Use case remove list of domain users from a pool

The above request contains the media type “application/xml” as an input.
The API is called with the above xml as an input with HTTP DELETE method to delete the list of members for
the pool.

You can also use combination of username, ipAddress, host and clientID can be used to add to the reservation
pool.

For example:

lopment</name>

NameList>

Response

The Response by default will be in XML format which contain a HTTP status code and response XML.
Also the status of this call can be identified through status field of the response object which will contain
SUCCESS / FAIL.

STATUS RESPONSE

. ___|

200 OK Below is the response when the DELETE call to remove members from a pool is
successful

200 OK In case the second query is executed immediately after the first one, you will get the following response

<numk

</summar

exist in (Deve

lopment

404 NOT FOUND

400 BAD
REQUEST

In case the input is malformed or not accepted, you will get 400 Bad Request from the server

500 INTERNAL
ERROR

In case of APLS server is not reachable/down or any internal issue. Or awrong URL is configured.

Points to note
[]

It is recommended to restrict the total number of member values deleted to 100 for faster
response.

Currently the request input support the media type “application/xml” only. The response media
can be either an xml or json based on the “Accept” header configuration in your query.

Also only APLS admin users are authorized to execute this query, please ensure you pass the
“Authorization” for this query using the admin users in APLS.

Pool name is case sensitive.

License Usage

ATTRIBUTE DESCRIPTION

productid Products code of the product configured in the APLS

For example: HP UFT

productVersion Product’s version

For example: 12.52

pdfiD Product definition file ID. Internal purpose, please ignore this value.

pdfVersion Product definition file version. Internal purpose, please ignore this value.

usageStartTimeUTCInSeconds Start time of the duration for which usage is retrieved.

Time is represented as seconds using the standard base time known as "the epoch", for e.g.
January 1, 2016, 00:00:00 GMT is represented as 1451606400

usageEndTimeUTCInSeconds End time for the duration for which usage is retrieved.

featureld

Feature ID

featureVersion

Feature Version

featureType

Feature Type (FLOATING)

featureDescription

Feature Description

peakUsage

Peak usage during the duration

averageUsage Average usage for the duration. Please notice the web service calculates,
Average = Total capacity checked out for the duration / Number of check outs.

In case of UI, the average calculated is per day and for the duration specified it is represented

as,

Average = Y (Average(day(1)) ...Average(day(n)) / number of days

totalCapacityCheckedout Total capacity checked out for the duration

applicationName Application name.

poolName Reservation pool name

poolCreatedBy Reservation pool created by

poolCreationTime Time the reservation pool created

allotedCapacitylnPool Reserved capacity of the pool

isRestricted Is the members restricted to the pool’s reserved capacity

Points to note:
e The above attributes are encompassed such as PoolFeatureUsage, ApplicationUsage, and
ProductFeaturePeakUsage in case of XML media type, based on the REST API

Retrieve Feature Usage

This REST API allows a developer to retrieve the usage for a Feature.

Request

REQUEST
|
Method URL

GET https://<hostname>:<port>/autopass/wsservices/v9.3/usage/feature?

featureld={feature_id}&featureVersion={feature_version}&startTime={startTimelnEpochSeconds}&endTime={start

TimelnEpochSeconds}

@param featureld:
Identifier of the feature for which usage is to be retrieved. Please refer to “License Usage” pane in APLS to
identify the {feature_id} of the feature

@param featureVersion:
Version of the feature for which the usage is to be retrieved. Please refer the same “License Usage” pane in
APLS to identify the {feature_version} of the feature

@param startTime:
Start time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch", for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400

@param endTime:
End time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch", for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400

Points to note:
By default, the response mediate type is of XML formation; however all GET APIs supports JSON format as well.
To generate JSON the request’s Accept header should have application/json.

Response
Response by default will be in the XML format which contains HTTP status code and usage for a given feature

and duration.
Also the status of this call can be identified through status field of the response object which will contain

SUCCESS / FAIL.

STATUS RESPONSE
__|]
200 OK Below is the success response for the above query.

Input value for {feature_id} is 10616, {feature_version} is 1, {startTimeInEpochSeconds} is 1475519400
and {startTimeInEpochSeconds} is 1475565690.

a>

produc

) rtTimeUTCINS
ageEndTimeU

404 Not Found In case an invalid or unavailable feature’s usage is queried

200 OK In case of valid feature but usage in not available for the duration

Points to note
e Ifclienttime out is set to 60 seconds and there are more than 1500 license transactions during the specified period,
the response may timeout. Please ensure you increase the connection and read timeout in this case

Retrieve Reservation Pool Usage

This REST API allows a developer to retrieve the usage for a reservation pool.

Request

REQUEST
|
Method URL

GET https://<hostname>:<port>/autopass/wsservices/v9.3/usage/pool?poolName

={pool_name}&startTime={startTimelnEpochSeconds}&endTime={startTimelnEpochSeconds}

@param poolName:

Reservation pool as configured in Reservation Management -> Pool Management of AutoPass License Server.
For more details to get the {pool_name} information, please refer the user guide ("Pool Management Tab").
Pool name is case sensitive. To retrieve usage for the common pool, specify “Common Pool” (case insensitive)

@param startTime:
Start time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch”, for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400

@param endTime:
End time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch", for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400

Points to note:
By default, the response mediate type is of XML formation; however all GET APIs supports JSON format as well.
To generate JSON the request’s Accept header should have application/json.

Response
Response by default will be in the XML format which contains HTTP status code and usage for a given feature

and duration.
Also the status of this call can be identified through status field of the response object which will contain
SUCCESS / FAIL.

STATUS RESPONSE
- ___|
200 OK Below is the success response for the above query.

Input value for {pool_name} is Development, {startTimeInEpochSeconds} is 1475519400 and

{startTimeInEpochSeconds} is 1475565690.

ageStartTime
eEndTimeUTCIn

ncurrent

cityInPool>

404 Not Found In case an invalid or unavailable pool usage is queried

200 OK In case of valid pool name but usage in not available for the duration

ot found.</custom

Points to note:
¢ Single pool usage can be retrieved through one request.
e Pool name other than “Common Pool” is case sensitive.

e Ifclient time out is set to 60 seconds and there are more than 1500 license transactions during the specified period,
the response may timeout. Please ensure you increase the connection and read timeout in this case

Retrieve Application Usage

This REST API allows a developer to retrieve usage against the feature which have been checked out for the
given application name from the client.

Request

REQUEST

- __|
Method URL

GET https://<hostname>:<port>/autopass/wsservices/v9.3/usage/application?

applicationName={application_name}&startTime={startTimelnEpochSeconds}&endTime={startTimelnEpochSecon
ds}

@param applicationName:

Application name is the value that product may pass during each check out transaction. .

For more details to get the {application_name} please refer the user guide ("Feature Report Page (License
Usage Pane") table. Application name is case insensitive.

@param startTime:
Start time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch”, for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400

@param endTime:
End time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch”, for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400

Points to note:
By default, the response mediate type is of XML formation; however all GET APIs supports JSON format as well.
To generate JSON the request’s Accept header should have application/json.

Response
Response by default will be in the XML format which contains HTTP status code and usage for a given feature

and duration.
Also the status of this call can be identified through status field of the response object which will contain
SUCCESS / FAIL.

STATUS RESPONSE
|
200 OK Below is the success response for the above query.

Input value for {application_name} is LeanFT, {startTimeInEpochSeconds} is 1475605800 and
{startTimeInEpochSeconds} is 1475692199.

artTimeUTCI
dTimeUTCIn

urrent Us

404 Not Found In case an invalid or unavailable application usage is queried

200 OK In case of valid application name but usage in not available for the duration

Points to note:
¢ Single application usage can be retrieved through one request.
e Application name is case insensitive.
o If client time out is set to 60 seconds and there are more than 1500 license transactions during the

specified period, the response may timeout. Please ensure you increase the connection and read
timeout in this case

Feature Usage Data

ATTRIBUTE DESCRIPTION

featureld Feature ID

featureVersion Feature Version

usageStartTimelnUTCSec Start time of the duration for which usage is retrieved.

Time is represented as seconds using the standard base time known as "the epoch", for e.g.
January 1, 2016, 00:00:00 GMT is represented as 1451606400.

usageEndTimelnUTCSec End time for the duration for which usage is retrieved.

reportType (1) Report Type '0' retrieves the license check out report and details for a specific feature
from 'In Use' page. (2) Report Type '1' retrieves the license checked in report and details for

a specific feature from 'History' page.

poolName Reservation pool name. The default is ‘ALL’

startAt The startAt (Also called Page Number) starts with ‘1. When a query (GET) would return a
large chunk of data, the result is broken into '‘pages'. 'startAt'— the row/record number of the

first item returned (in the transactionDetailsList attribute).

count The actual number of resources returned. By default it return 200 records.

Points to note:

o The above attributes are encompassed such as Raw and Summary Transaction details in case of XML
media type, based on the REST API

Retrieve Feature Usage Raw Transaction

This REST API allows a developer to retrieve the license checked out report and details for a specific feature. When a
license is checked out and checked in for a particular feature the usage data is also reflected in the ‘In Use’ and’ History’
page respectively. To retrieve the details of a specific feature license then call this API to get the Feature Report details.
The Feature Report details displays specific check out information about a feature license including:

(1) The checkout start and expiration date.

(2) The type of check out distribution: Live or Commuter.

(3) The capacity checked out.

(4) Check out and check in details for the license.

(5) The pools to which users who have licenses checked out belong. User can get the Usage Raw information based on
required pool.

Request

REQUEST

- __|
Method URL

GET https://<hostname>:<port>/autopass/services/v10.3/feature/usage/raw?

featureld={feature_id}&featureVersion={feature_version}&usageStartTimelnUTCSec
={startTimelnEpochSeconds}&usageEndTimelnUTCSec={endTimelnEpochSeconds}&reportType={ReportType}&

poolName={Pool Name}&startAt={pageNumber}&count={Count of records to print}

@param featureld:
Identifier of the feature for which usage is to be retrieved. Please refer to “License Usage” pane in APLS to identify the {
featureld} of the feature.

@param featureVersion:
Version of the feature for which the usage is to be retrieved. Please refer the same “License Usage” pane in APLS to identify
the {featureVersion} of the feature.

@param usageStartTimelnUTCSec:
Start time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch”, for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400.

@param usageEndTimelnUTCSec:
End time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch", for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400.

@param reportType: Defaultis 1

(1) Report Type '0' Retrieves the license checked out report and details for a specific feature in 'In Use' page.
(2) Report Type '1' Retrieves the license checked in report and details for a specific feature in 'History' page.

@param poolName: Default is ‘ALL’

Reservation pool as configured in Reservation Management -> Pool Management of AutoPass License Server. For more
details to get the {poolName} information, please refer the user guide (‘Pool Management Tab').Pool name is case sensitive.
To retrieve usage for the common pool, specify “Common Pool” (case insensitive).

@param startAt: Defaultis 1
The page number starts from 1 so when a query (GET) would return a large chunk of data, the result is broken into 'pages'.
'startAt'— also called page number of row/record number of the first item returned (in the transactionDetailsList attribute).

@param count: Default is 200
The actual number of resources returned (in the transactionDetailsList attribute). Default value is 200 per page.

Points to note:
By default, the response media type is of XML formation; however all GET APIs supports JSON format as well. To

generate JSON the request’s Accept header should have application/json.

Response
Response by default will be in the XML format which contains HTTP status code and raw usage for a given

feature and duration.

STATUS RESPONSE
|}

Below is the success response for the above query.

200 OK
Input value for {featureId} is 10594, {featureVersion} is 1, {usageStartTimeInUTCSec} is 1505986228
,{usageEndTimeInUTCSec} is 1505986228 {reportType} is 1 and {poolName} is ALL
iption>
geEndTimeInUT
rtDate>
InTime>
406

Not Acceptable

cannot be null or empty.<

200 OK In case of valid feature but raw usage in not available for the duration

eEndTimeInUT
rtD 1=

P
>1</reportTyr

C Found in Li
data is empty, e ound in

404

server has not found anything matching the Request-URI

405

method specified in the Request-Line is not :

dentified by the Request-URI.

Retrieve Feature Usage Summary Transaction

This REST API allows a developer to retrieve the summary of check out and check in history details as displayed in APLS
Ul. You can get this data based on the Group/Pool Name. It retrieves the following information.

(1) The name of the pool

(2) Pool wise usage maximum consumed or maximum checkouts at any point of time in the given date range.

(3) Average - Sum of all the checkouts divided by number of checkouts in the given date range.

(4) The number of users. The feature wise checked in and checked out history details in numbers at any given point of time
i.e. (1) Maximum (2) Average

Request

REQUEST

- ___|
Method URL

GET https://<hostname>:<port>/autopass/services/v10.3/feature/usage/summary?

featureld={feature_id}&featureVersion={feature_version}&usageStartTimelnUTCSec
={startTimelnEpochSeconds}&usageEndTimelnUTCSec={endTimelnEpochSeconds&poolName={Pool Name}

@param featureld:
Identifier of the feature for which usage is to be retrieved. Please refer to “License Usage” pane in APLS to identify the
{featureld} of the feature.

@param featureVersion:
Version of the feature for which the usage is to be retrieved. Please refer the same “License Usage” pane in APLS to identify
the {featureVersion} of the feature.

@param usageStartTimelnUTCSec:
Start time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch", for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400.

@param usageEndTimelnUTCSec:
End time of the duration for which the usage is to be retrieved. Time is represented as seconds using the standard base
time known as "the epoch", for e.g. January 1, 2016, 00:00:00 GMT is represented as 1451606400.

@param poolName: Default is ‘ALL’

Reservation pool as configured in Reservation Management -> Pool Management of AutoPass License Server. For more
details to get the {poolName} information, please refer the user guide (‘Pool Management Tab').Pool name is case sensitive.
To retrieve usage for the common pool, specify “Common Pool” (case insensitive).

Points to note:
By default, the response media type is of XML formation; however, all GET APIs supports JSON format as well. To

generate JSON the request’s Accept header should have application/json.

Response
Response by default will be in the XML format which contains HTTP status code and summary information for a given

feature and duration.

STATUS RESPONSE
|
200 OK Below is the success response for the above query.

Input value for {featureIld} is 10594, {featureVersion} is 1, {usageStartTimeInUTCSec} is 1505986228
,{usageEndTimeInUTCSec} is 1505986228 ,and {poolName} is ALL

ription>

406

Not Acceptable

</errorDetail>

200 OK In case of valid feature but raw usage in not available for the duration

404

405

dentified by the Request-URI.

GET Summary Product/License Usage

Report Summary usage

This API will retreive the usage reported by product, the installed licenses and license capacities for license
features and product features.

e The product should be available in APLS before a usage is retrieved any of the product features or
license features.

e This API supports both DB and IDM authentication (effective 10.6 version).

End Boint —

Method URL

POST https://<HOSTNAME >:<PORT>>/autopass/services/v10.5/feature/summary

Request

s:string"/>

Sample Request

r>10027 1.0 HP UFT 12.50</pdfIdentif
t>

ier>

STATUS RESPONSE

aQmn

200 OK N sion 1.0 encoding="UTF-8" star

JAVA Sample Code

Fetch License (“HTTP GET”) from APLS

StringBuffer urlString = new
StringBuffer("https://<APLM_IP_OR_HOST>:<PORT>/autopass/services/vl/license")
.append("?"
.append("productUniqueId="
.append("<Unique_Product_Id>")
.append("lastServerTimeStamp="
.append("<lastServerTimeStamp_In_seconds>");

URL url = new URL strBuffer.toString());

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setDoOutput(true);

conn.setRequestMethod("GET");
conn.setRequestProperty("Content-Type", "application/xml");
conn.setRequestProperty("Accept"”, "application/xml");

OutputStream os = conn.getOutputStream();
os.write(input.toString().getBytes());
os.flush();

If not created
if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

String output;

System.out.println ("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

conn.disconnect();

Remove License (“HTTP DELETE”) from APLS

URL url = new URL("https://<APLM_IP_OR_HOST>:<PORT>/autopass/services/vl/licenses");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setDoOutput(true);

conn.setRequestMethod ("DELETE");//DELETE to remove licenses from the APLMS
conn.setRequestProperty("Content-Type", "application/xml");
conn.setRequestProperty("Accept"”, "application/xml");

//Input xml

StringBuffer input = new StringBuffer("<RemovelLicenseRequest>")
.append("<RemovelLicenseInfo>")
.append("<featureID>").append(Featureid).append("</featureID>")

.append ("<featureVersion>1</featureVersion> "))
.append ("</RemovelLicenseInfo>"))
.append ("</RemovelLicenseRequest>");

conn.setRequestProperty ("APAUTHTOKEN", getIDMauthToken());

OutputStream os = conn.getOutputStream();
os.write(input.toString().getBytes());
os.flush();

If not created
if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code : "
+ conn.getResponseCode());

}

BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

String output;

System.out.println ("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

conn.disconnect();

Add Licenses (“HTTP POST”) to APLS

private static String TARGET_URL =https://<APLM IP OR HOST>:<PORT>/autopass/services/v1l/";
String upload = "C:/file.txt";
ClientConfig clientConfig = new ClientConfig();
Client client = ClientBuilder.newBuilder().register(MultiPartFeature.class).build();
client.register(feature);
clientConfig.register(MultiPartFeature.class);
WebTarget target = client.target(TARGET_URL).path("licenses");
FormDataMultiPart multiPart = new FormDataMultiPart();
FileDataBodyPart fileDataBodyPart = new FileDataBodyPart("file", new File(upload));
multiPart.bodyPart(fileDataBodyPart);
System.out.println ("Uploading license file...");
Response response = null;
try {
response=target.request().header("APAUTHTOKEN",getIDMauthToken()).post(Entity.entity(multiP
art, multiPart.getMediaType()), Response.class);
} catch (Exception ex) {
System.out.println(ex);

}

if (response != null) {
System.out.println("Upload response:
response.getStatusInfo() + " " + response);

}

+ response.getStatus() + +

Get the list of licenselD’s from AutoPassJ Core and use the licenselD in removeAPI call to remove the license(s)
from APLS based on LicenselD

Properties autopassjprop=new Properties();
autopassjprop.setProperty(AutopassJPropertyKeys.DATA DIR,"C://data");//data dirctory
autopassjprop.setProperty(AutopassJPropertyKeys.LIC_FILE, "C://data/LicFile.txt");//lic file
autopassjprop.setProperty(AutopassJPropertyKeys.PDF_PATH, "C:/10027_1.0 HP UFT_12.52.pd");//pd
autopassjprop.setProperty(AutopassJPropertyKeys.ENABLE_CRYPTO_TYPE, "0");
autopassjprop.setProperty(AutopassIPropertyKeys.ALLOW _APSC_GENERATED_KEY, "N");

try

{

Autopass] autopassj=new Autopass](autopassjprop);

Lock lock=new Lock();

List<License> licenselList=autopassj.reportLicenseSet (lock, false);

for(License license: licenselList) {

System.out.println("License ID" + license.getlLicenseID());

}

catch(Exception ex)

{System.out.println(ex);}

Get Lock (“HTTP POST”) from APLS

URL url = new URL("https://<APLM_IP_OR_HOST>:<PORT>/autopass/services/v1l/lock");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setDoOutput(true);

conn.setRequestMethod("POST");//DELETE to remove licenses from the APLMS
conn.setRequestProperty("Content-Type", "application/xml");
conn.setRequestProperty("Accept"”, "application/xml");

//Input xml

StringBuffer input = new StringBuffer("<LmsLockRequest>")
.append("<productUniqueId>")
.append(“<productUniqueId>”)
.append("</productUniquelId>")
.append ("</LmsLockRequest>");

OutputStream os = conn.getOutputStream();
os.write(input.toString().getBytes());
os.flush();

If not created
if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

String output;

System.out.println ("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

|conn.disconnect();

Get Feature Details (“HTTP GET”) from APLS

StringBuffer urlString = new
StringBuffer("https://<APLM_IP_OR_HOST>:<PORT>/autopass/services/vl/product/features")
.append("?"
.append("productUniqueId="
.append("HPEOBR_10.10");

URL url = new URL strBuffer.toString());

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setDoOutput(true);

conn.setRequestMethod("GET");//DELETE to remove licenses from the APLMS
conn.setRequestProperty("Content-Type", "application/xml");
conn.setRequestProperty("Accept"”, "application/xml");
conn.setRequestProperty("APAUTHTOKEN", getIDMauthToken());

OutputStream os = conn.getOutputStream();
os.write(input.toString().getBytes());
os.flush();

If not created
if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

String output;

System.out.println ("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

conn.disconnect();

Sample code to “GET” feature usage

URL url = new
URL("https://localhost:5814/autopass/wsservices/v9.3/usage/feature?featureld=10616&featureVersio
n=1&startTime=14756058008&endTime=1475692199");

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setDoOutput(true);

conn.setRequestMethod ("GET");

conn.setRequestProperty("Accept"”, "application/xml");

//Authorization Header

String aplsUserName = "aplsUser";

String aplsPassword = "password";

BASE64Encoder enc = new sun.misc.BASE64Encoder();

String userpassword = new
StringBuffer(aplsUserName).append(":").append(aplsPassword).toString();

String encodedAuthorization = enc.encode(userpassword.getBytes());

StringBuffer encodeValue = new StringBuffer("Basic ").append(encodedAuthorization);
conn.setRequestProperty("Authorization", encodeValue.toString());

//Connect to Server
conn.connect();

if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

//Get response
BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

//Print response

String output;

System.out.println("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

//Disconnect Server
onn.disconnect();

Sample code to “POST/DELETE” (add/remove) members to/from Reservation Pool.

URL url = new URL("https://localhost:5814/autopass/wsservices/v9.3/reservation/pool/members");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();

conn.setDoOutput(true);

conn.setRequestMethod("POST");//DELETE to remove members from the reservation pool
conn.setRequestProperty("Content-Type", "application/xml");

conn.setRequestProperty("Accept"”, "application/xml");

//Input xml

StringBuffer input = new StringBuffer("<ReservationPool>")
.append("<name>Development</name>")
.append("<members>")
.append("<userNameList>")
.append("<userName>ASIAPACIFIC/rpadmava</userName>")
.append("<userName>ASIAPACIFIC/ramana</userName>")
.append("</userNameList>")
.append("</members>")
.append("</ReservationPool>");

//Admin Authorization Header

String aplsUserName = "admin";

String aplsPassword = "password";

BASE64Encoder enc = new sun.misc.BASE64Encoder();

String userpassword = new
StringBuffer(aplsUserName).append(":").append(aplsPassword).toString();

String encodedAuthorization = enc.encode(userpassword.getBytes());

StringBuffer encodeValue = new StringBuffer("Basic ").append(encodedAuthorization);
conn.setRequestProperty("Authorization", encodeValue.toString());

OutputStream os = conn.getOutputStream();
os.write(input.toString().getBytes());
os.flush();

If not created
if (conn.getResponseCode() != HttpURLConnection.HTTP_CREATED || conn.getResponseCode() !=
HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

String output;

System.out.println("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

conn.disconnect();

Sample code to “GET” feature usage Raw Transaction Data

URL url = new
URL("https://localhost:5814/autopass/services/v10.3/feature/usage/raw?featureId=10594&featurever
sion=1&startTime=1505986228&endTime=1505986228&reportType=1&poolName=all");

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

conn.setDoOutput(true);

conn.setRequestMethod("GET");

conn.setRequestProperty("Accept"”, "application/xml");

//Authorization Header

String aplsUserName = "admin";

String aplsPassword = "password";

BASE64Encoder enc = new sun.misc.BASE64Encoder();

String userpassword = new
StringBuffer(aplsUserName).append(":").append(aplsPassword).toString();

String encodedAuthorization = enc.encode(userpassword.getBytes());

StringBuffer encodeValue = new StringBuffer("Basic ").append(encodedAuthorization);
conn.setRequestProperty("Authorization", encodeValue.toString());

//Connect to Server
conn.connect()
if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

//Get response
BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

//Print response

String output;

System.out.println ("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

//Disconnect Server
onn.disconnect();

Sample code to “GET” feature usage summary Transaction Data

URL url = new
URL("https://localhost:5814/autopass/services/v10.3/feature/usage/summary?featureId=10594&featur
eVersion=1&startTime=1505986228&endTime=1505986228&poolName=all");

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

conn.setDoOutput(true);

conn.setRequestMethod ("GET");

conn.setRequestProperty("Accept"”, "application/xml");

//Authorization Header

String aplsUserName = "admin";

String aplsPassword = "password”;

BASE64Encoder enc = new sun.misc.BASE64Encoder();

String userpassword = new
StringBuffer(aplsUserName).append(":").append(aplsPassword).toString();

String encodedAuthorization = enc.encode(userpassword.getBytes());
StringBuffer encodeValue = new StringBuffer("Basic ").append(encodedAuthorization);
conn.setRequestProperty("Authorization", encodeValue.toString());

//Connect to Server
conn.connect()
if (conn.getResponseCode() != HttpURLConnection.HTTP_OK) {
throw new RuntimeException("Failed : HTTP error code :
+ conn.getResponseCode());

}

//Get response
BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));

//Print response

String output;

System.out.println ("Output from Server \n");

while ((output = br.readLine()) != null) {
System.out.println(output);

}

//Disconnect Server
onn.disconnect();

Points to note:
1. Use any Base64 encode options available to encode your username and password.

2. For “GET” APls, “application/json” option is also available for header

3. HTTPS connection requires client side certificate verification. It is recommended to have a valid certificate

at server and implement the certificate validation at client side. Refer “Using SSL Authentication in Java

Clients” for Java implementation
Search for “Developing RESTful Web Service Clients”, to implement RESTful clients

Important point to note, if client time out is set to 60 seconds and there are more than 1500 license
transactions during the specified period, the response may timeout. Please ensure you increase the

connection and read timeout in this case

6. The schema for the requests and responses are available at the APLS installer path
<INSTALLED_PATH>\HP AutoPass License Server\HP AutoPass License
Server\webapps\autopass\sdk\xsd

Error Codes
ERROR CODE ERROR INFO CUSTOM ERROR INFO
|

Feature or licenselD doesn't
15010 match. licenselD ({value}) specified is not associated with given Feature {value}.

{0} Invalid License Usage: License(s) has been generated from APSC (AutoPass Service

15005 Invalid License Usage. Center).
License(s) not added as it {0} License(s) not added as it cannot run in FIPS Mode. FIPS mode have to be disabled to
15006 cannot run in FIPS Mode. run these license(s).
15001 Invalid License File. Invalid License File. The file contains invalid licenses.
15007 No License found. License(s) not found in APLM server.
15008 License list is not defined. License list is not defined.

Product Definition is not
found for the product in the
14008 APLM server. Product Definition is not found for feature 206218:1 in the APLM server

The format of APLM server
14001 timestamp must be long. The format of APLM server timestamp must be long.

Product unique identifier
14009 cannot be null or empty. Product unique identifier cannot be null or empty.

Null or empty
productUniqueld or

(productid and
productVersion) or Null or empty productUniqueld or (productld and productVersion) or (featureld or
15011 (featureld or featureVersion) featureVersion)
12001 Pool Name does not exists Pool by name ({pool_name}) doesn't exist at License Server
12002 Member already exist e User by (x) already exists
e |P by (x) already exists
e Host by (x) already exists
e ClientID by (x) already exists
12003 Member list is not defined {userNameList} {ipAddressList} {hostList} {clientIDList} attributes are not defined

12004 IP address is not valid Please enter valid IP address

12005 Member doesn’t not exist

User by {value) doesn’t exist in (pooll)
IP by {value) doesn’t exist in (pooll)
Host by {value) doesn’t exist in (pooll)

ClientID by {value) doesn’t exist in ({pool_name})

Empty message string is passed by User. Field value

should not be null or empty

Empty message string is passed by IP. Field value should
not be null or empty

Empty message string is passed by Host. Field value
should not be null or empty

Empty message string is passed by Client Id. Field value

should not be null or empty

Invalid value {value} for query parameter {@paramname}

User - {value}, does not have permission to perform this

action

Product {product_code} with version {product_version} is

not configured in the License Server

12006 Failed to add member

12010 Invalid input

12011 Authorization Failed

12012 Product not found
Acronyms

APLS AutoPass License Server
APSC AutoPass Service Center

API Application Program Interface
REST Representational State Transfer
PD file Product Definition file

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

